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Autonomy at scale: where are we 

headed?



Automated Driving

Automotive: Use Cases and Customers
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User Comfort and Assist

(Inside the Vehicle) (Outside the Vehicle)



Mercedes Benz MBUX (Paris Auto Show 18)
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Mercedes Benz MBUX (CES 2020 – front + rear cameras)



Autonomous Driving: Pedestrians and VRUs
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Autonomous Driving: Pedestrians and VRUs
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◼ Eureka Project PROMETHEUS 

Europe between 1987-1995 

◼ VITA II by Daimler-Benz, 

succeeded in automatically 

driving on highways

◼ DARPA Grand Challenge in 2004 - all participants 

FAILED to finish the 150-mile off-road track. 
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History of Autonomous Cars



◼ Another similar DARPA Grand Challenge 

was held in 2005. This time five teams 

managed to complete the off-road track 

without any human interference. 

Velodyne supplier to all teams.

◼ DARPA Urban Challenge held in 2007, 

test environment that was modelled after 

a typical urban scene. Six teams 

managed to complete the event. 
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History of Autonomous Cars – cont.
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Genuine Progress getting Masked
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❑ Automated emergency 

braking is standard on 

every new car as of 

September 2022 - 2016 

agreement -  automakers, 

I.I.H.S., National Highway 

Traffic Safety Administration

❑ Radar or camera-linked 

brakes have cut police-

reported rear-end collisions 

by a 50% (I.I.H.S.)

❑ Automated pedestrian braking has reduced the number of car-human collisions 

by 30% versus cars without the feature. 

❑ And anti-lock brakes; cameras, radar and ultrasonic sensors to manage blind 

spot and lane departure monitors; and adaptive cruise control have become 

standard



◼ And we can do autonomy algorithms either using:

◼ End to End Systems

End-to-end or Modular?

13



◼ And we can do autonomy algorithms either using:

◼ End to End Systems or

◼ Modular Systems
▪ Perception

▪ Scene Representation and Localization

▪ Prediction

▪ Planning and decision making

▪ Vehicle control
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Perception

Scene 

Representation

and Localization

Prediction

Planning 

and 

Decision 

Making

Vehicle Control

End-to-end or Modular?
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Perception: Autonomous Driving
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Perception: Autonomous Driving
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moving objects static objects

road signs

overhead signs

traffic lights

lane lines

road markings

curbs

crosswalks

environment tags: residential, tunnel, approaching toll booth, etc.



Perception: Long Tail
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Each task has additional sub-task: e.g.: object types, vehicle classes, 

blinkers, brakes, parked, collision, etc.



Perception: Long Tail
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Even a sub-task is (car detection) a very difficult problem! Note, 97% is not 

good enough, finally we need 99.9999%



The Long Tail Problem
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◼ Want to capture behaviour corner cases, but those by 

definition do not much training data.
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Navigation scenarios

The Long Tail Problem – skydio 2+
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The Long Tail Problem



◼ Challenges

◼ High accuracy, more than 600 classes

◼ Should work without HD maps

◼ Data imbalance, some rare signs have very few examples

◼ Text only signs, specially in the US

◼ Low latency, high accuracy system

Another example – Traffic Sign Recognition
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The Long Tail Problem
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Scene Representation and Localization



Localization: LIDAR
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Localization: Only Vision
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Scene Representation: Autonomous Driving
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Prediction: Autonomous Driving
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Prediction: Autonomous Driving
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Prediction: In the Sky
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Motion Planning: Autonomous Driving
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Vehicle Control: Autonomous Driving
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◼ Execute path from Motion Planning by giving relevant 

actuator commands (steering, acceleration, brake, etc.)

◼ However, tracking errors are generated due to 

inaccuracies in vehicle model (e.g. wheel slip during hard 

breaking)

◼ Two approaches to fix these errors:

◼ Classic control: Feedback control uses the measured system response 
and actively compensates for any deviations

◼ Model predictive control



Modular Vs End-to-End
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◼ Modular approach helps divide tasks within a team, 

engineering is easier, more interpretable 

◼ Hand coded rules (priors) easier to include in each module 

◼ Each step of process performed in sequential modular silos

◼ Stack has to be manually tuned for each introduced change

◼ Limited information shared across modules (cascaded errors)

◼ Rely on “modules” for each problem, e.g. foliage

Perception

Scene 

Representation

and Localization

Prediction

Planning 

and 

Decision 

Making

Vehicle Control



Modular Vs End-to-End
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◼ Simple: Single AI System

◼ Trained for the end task

◼ Difficult to add priors and rules

◼ Lack of interpretability for validation and safety

◼ Require a lot of examples 

Perception Vehicle Control

Neural Network



End-to-end Learning - Wayve
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◼ And we can do autonomy algorithms either using:

◼ End to End Systems

End-to-end Learning - Wayve
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Emergent Behaviour - Wayve
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❑ End-to-end Transformer 

Architecture for driving 

model

❑ Attention changes from 

Traffic lights to road when 

it turns Green



Hybrid: Joint Perception and Prediction
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◼ Mix of both Modular and end-to-end

Perception

+

Prediction

Planning 

and 

Decision 

Making

Vehicle Control

Maps

Sensors

Detections Tracks Long Term Predictions



Hybrid: Joint Perception and Prediction
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Perception

+

Prediction

Planning 

and 

Decision 

Making

Vehicle Control

Maps

Sensors

Detections Tracks Long Term Predictions

J. Phillips, J. Martinez, I. A. BÃ¢rsan, S. Casas, A. Sadat and R. Urtasun

Deep Multi-Task Learning for Joint Localization, Perception, and Prediction

In Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, June 

2021

S. Casas, A. Sadat and R. Urtasun

MP3: A Unified Model to Map, Perceive, Predict and Plan (oral)

In Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, June 

2021
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Classical vs Modern ML Systems



The Factory: Data Engine
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Sensors: Complementary and Redundant
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Boeing 737 MAX AOA sensor did not have proper redundancy!

• Vision/Camera

• Radar

• LIDAR

• Location

• Ultrasonic



Sensors: Complementary and Redundant
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Boeing 737 Max
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Use of Single Angle of Attack (AOA) Sensor In the original design, erroneous data from a single AOA 
sensor activated MCAS and subsequently caused airplane nose-down trim of the horizontal stabilizer. 

In the new design, Boeing eliminated MCAS reliance on a single AOA sensor signal by using both AOA 
sensor inputs and through flight-control law changes that include safeguards against failed or 
erroneous AOA indications. The updated FCC software with revised flight-control laws uses inputs 
from both AOA sensors to activate MCAS. This is in contrast to the original MCAS design, which relied 
on data from only one sensor at a time, and allowed repeated MCAS activation as a result of input from 
a single AOA sensor. The updated FCC software compares the inputs from the two sensors to detect a 
failed AOA sensor. If the difference between the AOA sensor inputs is above a calculated threshold, 
the FCC will disable the STS, including its MCAS function, for the remainder of that flight and 
provide a corresponding indication of such deactivation on the flight deck.



Sensor-Setup Comparison
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Uber XC 90
Google 

Koala Tesla Model S

Total # cameras 10 6 6

Total # radars 6 5 1

Total # ultrasonic 

clusters
4 0 4

Total # lidars 1 5 0

Total # sensors 21 16 11



Sensor-Setup Comparison
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◼ Tesla Model S: Reliable environment perception only in 

standard driving use cases; most corner cases not 

manageable or with severe restrictions and no 

redundancy

◼ Google “Koala”: Very good near-field due to availability 

of LiDAR. Two different types of LiDAR

◼ Uber XC 90: Problems anticipated for the case of 

entering priority roads due to missing corner LiDARs at 

the front (they have to rely on radar only!)



Simulation is essential
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Simulation is essential
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Simulation – all the way to the Sensors!
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Y. Chen, F. Rong, S. Duggal, S. Wang, X. Yan, S. Manivasagam, S. Xue, E. Yumer R. Urtasun

GeoSim: Photorealistic Image Simulation with Geometry-Aware Composition (oral)

In Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, June 2021

CAD GeoSim



Simulation
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S. Tan, K. Wong, S. Wang, S. Manivasagam, M. Ren and R. Urtasun

SceneGen: Learning to Generate Realistic Traffic Scenes

In Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, June 2021

J. Wang, A. Pun, J. Tu, S. Manivasagam, A. Sadat, S. Casas, M. Ren, R. Urtasun

AdvSim: Generating Safety-Critical Scenarios for Self-Driving Vehicles 

In Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, June 2021
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Copilot4D: Fundamental Models for AV



Test Facility: Waymo
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Castle, CA (91 acres)



What is a good mAP?
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◼ Most metrics lack a clear passing criteria for letting a car 

on the road

◼ Consider mAP for Semantic Segmentation - no specific 

threshold for when your mAP is high enough to be safe



Is recall of 96.6 for Cars enough?
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3D Object Detection Results on KITTI Dataset

◼ Struggles even with the “easy” cases of pedestrians

◼ Hard to decide on the exact expectations on precision 

and recall in object detection



Unit Testing Perception Systems – example

59



Unit Testing Perception Systems – examples
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Unit Testing Perception Systems – examples
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Also extend to 3D (presence and absence polygons)



Compute Hardware
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320 TOPS for AI Inferencing

ASIL D Functional Safety



Few Companies going Autonomous
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When will we get truly Autonomous Cars?
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How far have we come?
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When will we get truly Autonomous Cars?

68

2037



Case for India?
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Tesla: Urban and Highway Full AutoPilot
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Thank you!
http://arjunjain.co.in

arjun@fastcode.ai

http://arjunjain.co.in/
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